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a b s t r a c t

A new random walk based stochastic algorithm for solving transient diffusion
equations in domains where a reflection boundary condition is imposed on a
plane part of the boundary is suggested. The motivation comes from the field
of exciton transport and recombination in semiconductors where the reflecting
boundary is the substrate plane surface while on the defects and dislocations an
absorption boundary condition is prescribed. The idea of the method is based
on the exact representations of the first passage time and position distributions
on a parallelepiped (or a cube) with a reflection condition on its bed face lying
on the substrate. The algorithm is meshfree both in space and time, the particle
trajectories are moving inside the domain in accordance with the Random Walk
on Spheres (RWS) process but when approaching the reflecting surface they switch
to move on parallelepipeds (or cubes). The efficiency of the method is drastically
increased compared with the standard RWS method. For illustration, we present an
example of exciton flux calculations in the cathodoluminescence imaging method
in semiconductors with a set of threading dislocations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic methods for solving boundary value problems for parabolic and elliptic differential equations
are based on probabilistic representations in the form of mathematical expectations in the space of diffusion
processes [1]. The most popular stochastic method, the Random Walk on Spheres (RWS) algorithm (e.g., see
[2–4]) is extensively used in practical simulations when solving the diffusion [5], drift–diffusion–reaction
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equations, both for steady-state and transient Dirichlet boundary value problems [6–8], systems of diffusion–
reaction equations [9], and some higher order elliptic equations [3]. Extensions to other type of random walks,
e.g., random walk on half-spheres [10], rectangles and parallelepipeds [11–14], cylinders [15], etc. have been
developed. The Dirichlet (absorbing) boundary conditions cause no problems for the random walk on spheres
process: the trajectory is stopped as it hits a small layer near the boundary, Γε = {x : |x − y| < ε} where y
is a boundary point closest to the point x. It is known [3] that the random walk on spheres process converges
to the boundary very fast: the mean number of steps N to reach the boundary Γε behaves as N ∼ | log (ε)|.
This type of random walk methods are meshfree, and calculate the solution in arbitrary points without
calculating the whole solution field in the domain. However the efficiency of the method drops considerably
if on a part of the boundary a reflection boundary condition is prescribed. The difficulty comes from the fact
that generally, it is not possible to exactly simulate the behavior of the trajectory of the diffusion process in
the vicinity of the reflecting boundary. Usually one introduces an approximation by expanding the solution
near the boundary which results in a new arbitrary parameter, h, a small distance on which the diffusing
particle is reflecting inside the domain when reaching the Γε boundary [4]. This approach introduces an
addition error, which is of order h, usually one takes h ∼

√
ε. But worse still, the length of the simulated

diffusion trajectory may be very long since it may be many times reflecting and entering again the layer Γε.
This may drastically increase the computer time.

In this paper we suggest a different approach which is based on an explicit simulation of the reflecting
diffusion process. The developed method does not use any approximation, it is meshfree and highly efficient
since the random walking particles are moving in accordance with the exact distributions which we derive
from the Green function for an arbitrary rectangular parallelepiped (or a cube) with a reflection condition on
its bed face and absorbing conditions on its other five faces. Our motivation to develop an efficient random
walk algorithm for solving diffusion problems with reflecting boundaries comes from the cathodoluminescence
imaging problems we studied by simulation of exciton trajectories [16] and some nonlinear coagulation
problems [17]. In this paper we present simulations of transient cathodoluminescence signals (e.g., see [18])
for a domain bounded by a plane (a semiconductor substrate) and a set of cylinders (dislocation surfaces).
Finally we note that the suggested algorithm can be easily extended to drift–diffusion–reaction problems
with a reflection condition on a plane part of the boundary by following the approach we used in [6,7].

2. Formulation of the mixed boundary value problem

Important practical case in semiconductor transport problems deals with domains where a part of the
boundary is a plane or a part of a plane while other parts are composed by dislocation surfaces [16,18,19].
The approach we suggest in this paper is that in this case, it is convenient to use near the plane surface
a random walk on cubes or rectangular parallelepipeds with one reflecting face while other five faces are
absorbing. The starting point of the particle is taken in the center of the cube or the parallelepiped. We
deal in this paper with the general anisotropic diffusion case. We mention by passing that in the anisotropic
diffusion, the Green function for a ball is not known in the literature, so it seems that the choice of the
random walking cubes or parallelepipeds is the only one possible for anisotropic equations.

Let us consider a three-dimensional nonstationary anisotropic diffusion equation:

∂w(x, t)
∂t

=
3∑

k=1
ak

∂2w

∂x2
k

, x = (x1, x2, x3) ∈ V, t ∈ [0, T ] (1)

where ak, k = 1, 2, 3 are diffusion coefficients in the relevant directions.
The domain V is assumed to be bounded or unbounded, in the latter case it is supposed that w → 0 as

|x| → ∞. Denote by Γ the boundary of V . We assume that a part of Γ , say, Γ1, is a plane or a part of a
plane, and let Γ2 = Γ \ Γ1.
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We consider the following mixed boundary value problem for Eq. (1): zero initial condition, w(x, 0) = 0,
the reflection condition on Γ1, and absorption condition on Γ2 are posed. According to the reciprocity
theorem [7] the function w(x, t) equals the flux to the boundary Γ2 if we prescribe the boundary conditions
as follows: w(y, t) = 1 for y ∈ Γ2, and ∂w

∂ν = 0 for y ∈ Γ1 where ν is a normal unit vector on Γ1.

3. The transient Green function for a rectangular parallelepiped with a reflection condition on the bed
face and absorption condition on the other faces

Let us denote by Π a rectangular parallelepiped lying inside the domain V : Π =
{

0 ≤ xk ≤ lk; k =
1, 2, 3

}
. We need a Green function G(x, y, τ) with zero initial conditions and the following boundary

conditions: zero normal derivative of G on Γ1, and G = 0 on Γ2. Here Γ1 is the bed face of Π with x3 = 0,
and Γ2 consists of other five faces of Π . The point y is the position of the unit point source. This Green
function can be found by solving the relevant spectral problem. We present the result:

The Green function of this problem reads G(x, y, τ) =
∏3

k=1 Gk(xk, yk, τ) where the Gk are the Green
functions of the relevant 1D boundary value problems. In our case, the Green functions G1 and G2 are the
same as for the Dirichlet conditions

Gk(xk, yk, τ) = 2
lk

∞∑
m=1

sin
(mπxk

lk

)
sin

(mπyk

lk

)
exp

[
−m2π2ak

l2
k

τ
]

, k = 1, 2 ,

and the Green function G3 obtained from the spectral expansion has the form

G3 = 2
l3

∞∑
m=1

cos
( (2m − 1)πy3

2l3

)
cos

( (2m − 1)πx3

2l3

)
exp

[
− (2m − 1)2π2a3

4l2
3

τ
]

.

Note that these series diverge as the time τ tends to zero, or, more exactly, as the dimensionless parameters
akτ/l2

k tend to zero. Therefore, for very small values of akτ/l2
k we can use the following representations

obtained by the Poisson series transformation (e.g., see [12,13]):

Gk(xk, yk, τ) = 1
2√

πakτ

∞∑
m=−∞

{
exp

[
− (xk − yk + 2mlk)2

4akτ

]
− exp

[
− (xk + yk + 2mlk)2

4akτ

]}
, k = 1, 2 , (2)

and

G3(x3, y3, τ) = 1
2√

πakτ

∞∑
m=−∞

(−1)m
{

exp
[
− (xk − yk + 2mlk)2

4akτ

]
+ exp

[
− (xk + yk + 2mlk)2

4akτ

]}
. (3)

In what follows we consider the case when akτ/l2
k is not very small. The case when this parameter is small

can be treated analogously using the expansions (2), (3).
For the sake of random walk efficient implementation we choose always the starting point in the center

of the parallelepiped, then (k = 1, 2)

Gk = 2
lk

∞∑
m=1

(−1)m+1 sin
( (2m − 1)π yk

lk

)
exp

[
− (2m − 1)2π2 ak

l2
k

τ
]

, (4)

and
G3 =

√
2

l3

∞∑
m=1

γm cos
( (2m − 1)πy3

2l3

)
exp

[
− (2m − 1)2π2a3

4l2
3

τ
]

(5)

where γm = cos
(

(2m−1)π
4

)
is a sequence of ±1 values: γ1 = 1, γ4m−2 = γ4m−1 = −1, and γ4m = γ4m+1 = 1,

m = 1, 2, . . .,.
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Integrating the normal derivatives of the Green function over the five absorbing faces we obtain the
probability density of the first passage time:

p(τ) = 32
√

2
π

[a1

l2
1

F1(a1, τ)F2(a2, τ)F̂2(a3, τ) + a2

l2
2

F1(a2, τ)F2(a1, τ)F̂2(a3, τ)

+ a3

4l3
3

F̂1(a3, τ)F2(a1, τ)F2(a2, τ)
]

where

F1(ai, τ) =
∞∑

m=1
(−1)m+1(2m − 1) exp

[
− (2m − 1)2π2ai

l2
i

τ
]

, i = 1, 2,

F2(ai, τ) =
∞∑

k=1
(−1)k+1 1

2k − 1 exp
[
− (2k − 1)2π2ai

l2
i

τ
]

, i = 1, 2,

F̂1(a3, τ) =
∞∑

m=1
γ̂m (2m − 1) exp

[
− (2m − 1)2π2a3

4l2
3

τ
]

,

F̂2(a3, τ) =
∞∑

k=1
γ̂m

1
2k − 1 exp

[
− (2k − 1)2π2a3

4l2
3

τ
]

.

Here γ̂2m−1 = γ2m−1, and γ̂2m = −γ2m, m = 1, 2, . . .. Now we find the distribution densities of the exit
point on the five absorbing faces of the parallelepiped. First we note that the 1D probability densities on
the horizontal coordinates x1 and x2 are derived by taking the normal derivatives on the relevant faces. This
yields

pa1(y1, τ) = 1
F2(a1, τ)

π

2l1

∞∑
k=1

(−1)k+1 sin
[ (2k − 1)πy1

l1

]
exp

[
− (2k − 1)2π2a1

l2
1

τ
]

,

pa2(y2, τ) = 1
F2(a2, τ)

π

2l2

∞∑
k=1

(−1)k+1 sin
[ (2k − 1)πy2

l2

]
exp

[
− (2k − 1)2π2a2

l2
2

τ
]

.

Analogously we find the probability density function

pa3(y3, τ) = 1
F̂2(a3, τ)

π

2l3

∞∑
k=1

γk cos
[ (2k − 1)πy3

2l3

]
exp

[
− (2k − 1)2π2a3

4l3
3

τ
]

.

The conditional probability density on the five absorbing faces under the condition that the time is fixed is
represented as a weighted sum of independent 2D distribution densities:

p(y1, y2, y3|τ) = 1
p(τ)

{16
√

2
π

a1

l2
1

F1(a1, τ)F2(a2, τ)F̂2(a3, τ)pa2(y2, τ)pa3(y3, τ)

+ 16
√

2
π

a2

l2
2

F1(a2, τ)F2(a1, τ)F̂2(a3, τ)pa1(y1, τ)pa3(y3, τ)

+ 8
√

2
π

a3

l2
3

F̂1(a3, τ)F2(a1, τ)F2(a2, τ)pa1(y1, τ)pa2(y2, τ)
}

.

From this representation we can construct the sampling algorithm from the distribution density on the five
absorbing faces of the parallelepiped: first we choose the face from the weight probabilities, and then sample
the point from the relevant independent one-dimensional probability densities. Indeed, with probability

P1 = 1
p(τ)

16
√

2
π

a1

l2
1

F1(a1, τ)F2(a2, τ)F̂2(a3)
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we sample from the density pa2(y2, τ)pa3(y3, τ) a random point (0, y2, y3) or (l1, y2, y3) on the faces x1 = 0
or x1 = l1 with probability 1/2. With probability

P2 = 1
p(τ)

16
√

2
π

a2

l2
2

F1(a2, τ)F2(a1, τ)F̂2(a3)

we sample from the density pa1(y1, τ)pa3(y3, τ) a random point (y1, 0, y3) or (y1, l2, y3) on the faces x2 = 0
or x2 = l2 with probability 1/2. Finally, on the face x3 = l3 we sample with probability P3 = 1 − P1 − P2 a
random point (y1, y2, l3) from the density pa1(y1, τ)pa2(y2, τ).

In conclusion we note that the sampling random variables from the densities presented in this paper in
the form of alternating series can be efficiently carried out by Devroye’s method [20] as described in detail in
our recent paper [7]. Another even more efficient technique is to use a tabulation of the probability densities
and apply the alias Walker’s algorithm [20]. More details are given in the next section.

4. Algorithm

For clarity, we describe the random walk algorithm for solving the mixed boundary value problem (1)
under the reflection boundary condition on Γ1 and absorption conditions on Γ2 for the isotropic diffusion case
when a1 = a2 = a3. Or more generally, the Dirichlet boundary condition on Γ2 is assumed: w(y, t) = g(y, t),
y ∈ Γ where g(y, t) is an arbitrary given function. The anisotropic case is treated analogously.

Before we present the algorithm, let us shortly describe the algorithm of sampling from p(τ), the first
passage time for a sphere and the same for the parallelepiped. Here different approaches can be used,
e.g., see [11–13]. For instance, in [12] it is suggested to numerically invert the distribution function which
is quite time consuming. In [7] we applied the Devroye method for densities represented in the form of
alternating series. This method converges very rapidly. However our simulations have shown that the most
efficient algorithm is constructed as follows: first precalculate discrete tables for the densities, and then it
remains to apply the Walker alias method which is extremely efficient: the cost does not depend on the size
of the approximating array. For instance, in the case of a sphere of radius R, and diffusion coefficient D,
first we approximate the first passage time density for a sphere of unit radius and D = 1:

p(τ) = 2
∞∑

m=1
(−1)n+1π2 n2 exp

(
− π2n2 τ) (6)

by a discrete approximation, and generate the random time t using Walker’s algorithm. Then calculate the
desired sample time τ as τ = R2 t/D. Note that in the small time region instead of (6) we can use the well
known approximation [12] p(τ) = −F ′(τ) where F (τ) = 2 exp[1/(4τ)

] 1√
πτ

. The same approach is used for
generating the first passage time for parallelepipeds since all we need here is to precalculate the values of
the first passage time density in the nodes of a one-dimensional grid.

To calculate the solution w(x, t) in a fixed point x0, for t ∈ [0, T ], we simulate N independent trajectories
all starting from the point x0.

The general simulation procedure is organized as follows: as long as the random position of the random
walk is far from the reflecting boundary Γ1, we use the random walk on spheres process. But when the
random walk enters a layer ΓH of depth H near the boundary Γ1, we switch to simulate the random walk
on parallelepipeds (or cubes) whose bed faces are lying on Γ1. Due to the reflection condition the random
walk after only a few steps comes out of the layer ΓH and proceeds till it hits the boundary Γ2,ε where a
value of 1 is scored at the relevant first passage time. By Γ2,ε we denote here the ε-layer along the absorbing
boundary Γ2. In more detail the algorithm can be described as follows.

We introduce a layer of depth H near the reflecting boundary Γ1 such that when entering H, the particle
switches to the random walk on parallelepipeds (or cubes). The value H is arbitrarily chosen but large
enough.
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1. A sphere S(x0, R0) centered at x0, and with a radius R0 equal to the shortest distance between x0 and
the boundary Γ is constructed.
2. Sample a random point x1 from the uniform distribution on the surface of the sphere S(x0, R0). The first
passage time τ0 is sampled from the density p(τ). Thus the time at which the particle arrives at its new
position x1 on the sphere is τ1 = t − τ0 where τ0 is simulated according to the density p(τ) in this sphere.
3. If the point x1 is still in the domain V \ H, then with x1 as a new center, we inscribe the next sphere,
S(x1, R1), the random point uniformly distributed on this sphere is sampled, and the random time τ1 spent
inside the sphere is simulated, etc.
4. If however the randomly walking point hits, say, on a step k, the layer H, then the next step is simulated
as follows. Inscribe a parallelepiped (or a cube) centered in the point xk, with its bed face lying on Γ1,
simulate the next point, xk+1 on the five absorbing faces, and generate the random first passage time τk as
described in Section 3.
5. If the next point, xk+1, is still inside the layer H, we simulate the next step as the random point distributed
on the parallelepiped (a cube) centered at xk+1, etc. If however the point xk+1 jumps outside the layer, we
switch again to the issue 3 and proceed to simulate the random walk on spheres process till the particle
comes back to the layer, etc.
6. If a particle is continuing to move randomly within the region Gε = G \ Γ2ε until t −

∑
i τi ≤ 0, then a

value of zero is scored. If the particle hits the set Γ2ε (say, at a point xε), at a time t1 = t −
∑

i τi ≥ 0, then
the value g(y, t1) is scored, where y is a boundary point closest to the point xε.

We have described the simulation of one trajectory which is terminated with a calculated score S1 equal
to zero or to g(y, t1). After simulation of N trajectories one calculates the arithmetic mean of all the scores.
This mean value is close to the exact solution to within a bias of order ε, and a statistical error of order of
C N−1/2 where the constant C depends on the variation of the function g on the boundary and the time
interval (0, T ). The cost of this algorithm is of order of log(ε)/ε2.

5. Simulation of the exciton transport and recombination in a semiconductor with a set of dislocations

The governing equation includes now an absorption term:

∂u(x, t)
∂t

= D∆u(x, t) − 1
τ̄

u(x, t) (7)

where τ̄ is the mean life time of the exciton before it recombines and gives rise to a photon emission [16,18].
The domain V representing a semiconductor with a set of threading dislocations is considered as a half-space
{z ≥ 0} with imbedded right semi-cylinders with their bases lying on the plane z = 0. The positions of the
dislocations are sampled at random uniformly distributed on the substrate. The surface z = 0 (excluding
the dislocation bases) is our reflecting boundary Γ1, and the union of the cylinders’ surfaces is the absorbing
boundary Γ2.

Using the relation u(x, t) = exp[−t/τ̄ ] w(x, t) between w, the solution of the heat equation, and u,
the solution of (7), we conclude that our problem to find u is reduced to solve the heat equation for the
function w with zero initial condition, reflection condition on Γ1, and transformed boundary condition
w(y, t) = exp[t/τ̄ ] g(y, t) on the absorbing boundary Γ2, i.e., on the dislocations’ surfaces.

The domain V representing a semiconductor is taken as a semi-infinite rectangular parallelepiped defined
by its base Xs × Ys = 100 × 100 nm2 lying on the plane z = 0, and z-coordinate on [0, ∞). A unit
instantaneous exciton source is distributed in the domain V as follows: the coordinates x, y are uniformly
distributed while the vertical coordinate z is distributed on (0, ∞) with the probability density f(ξ, η, ζ, t) =
δ(t) 1

100 exp (−ζ/100).
In our simulations we calculated the following functions: (1) the total flux of excitons to the dislocations’

surfaces, (2) the cathodoluminescence intensity CL(t) which is the concentration of excitons absorbed
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Fig. 1. Comparison of RWC and RWS algorithms: the solid lines present the results obtained by RWC, and the dashed lines are
obtained by the RWS algorithm. The presented curves are the transients of the intensity of cathodoluminescence, CL(t) (left panel),
the concentration of survived excitons (middle panel), and the total flux to the dislocation surfaces (right panel), depending on the
number of dislocations Ndis = 10, 50, 100.

(recombined) inside the domain V due to their finite life time, and (3) the concentration of survived excitons,
i.e., the part of excitons which still are diffusing inside the domain V . The following modeling parameters
were taken in the computer simulations: the diffusion coefficient D = 900 nm2/ns, the lifetime τ̄ = 1 ns, the
diffusion length L =

√
Dτ̄ = 30 nm, the dislocation radius Rdis = 3 nm, the number of exciton trajectories

N = 106.
The results of simulation presented in Fig. 1 are the transients of the intensity of cathodoluminescence,

CL(t) (left panel), the concentration of survived excitons (middle panel), and the total flux to the dislocations
surfaces (right panel), depending on the number of dislocations Ndis = 10, 50, 100. The solid curves are the
results obtained by the method developed in this paper, where the random walk on cubes (RWC) were used
when approaching the plane boundary, and the dashed curves are obtained by the RWS method described
in [7]. The results agree with an accuracy of 0.1%, while the computer time of the method based on the
random walk on cubes was 15 times less compared with that of RWS. We mention here one interesting
result of the simulations: the concentration of the survived excitons is considerably different for the number
of excitons 10 and 50. However with the increase of the number of excitons from 50 to 100 the transients of
these concentrations almost coincide.
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